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The stationary motion of a semi-infinite crack in a strip of finite width is con- 
sidered. The motion of the crack in the strip is due to displacement of the rigid- 

ly clamped strip boundaries normally to the crack. The solution of the problem 
is constructed by the Wiener-Hopf method. 

A similar problem has been examined in [l] in a static formulation. However, 
a computational error was committed in the factorization, whereupon the final 
formulas turn out to be in error. 

Some stationary problems of the propagation of normal discontinuity cracks 
have been analyzed in c2 - 91. In particular,it turns out that the Rayleigh velo- 
city is an unachievable upper bound of the propagation velocity of a normal dis- 
continuity crack. 

1. The geometry to be investigated in this problem is shown in Fig. 1 with the cor- 
responding coordinate system (the velocity of crack 
motion is constant). It is assumed that there exists a 
stat: of plane strain. 

The longitudinal and transverse wave potentials @ 

and Y in the moving coordinate system z = Z’ - ct, 

y = y’ satisfy the following equations in stationary 
/ 

(y=-b motion : 
---------- __________d p azp, + Pa, _ o 

arL 
Fig. 1 

v- ’ cc g+.g=o (1.1) 

(P = (1 - cz / c?)‘/~, a = (1 - ca / c22)‘/‘, c < c2) 

Here ~1, ca are the longitudinal and transverse wave velocities in the elastic medium. 
By virtue of the symmetry relative to the x -axis it is sufficient to consider only the 

domain O< y\(b, --<x<oo. The boundary conditions in the moving coordi- 
nate system are u = 0, v = vg, - ~<x<w for y=b (1.2) 

z xy = 0, ‘Jy = 0, x < 0 for y = 0 (1.3) 
z ry = 0, v 7, 0, x > 0 for y = 0 

(0, Y) = 0 (r”‘) for r = Jfx2 + y2 - 0 (condition on the edge [9]) (1.4) 

The solution of this problem can be represented as the sum of two stress fields. The first 
field corresponds to the homogeneous strain of a clamped infinite strip without a crack 

(1.5) 

The second stress and displacement field is found from the solution of the following 

boundary value problem : 
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u=o,v=o, -W<X<M for y=b 

z xy=O, -w<x<w 
for y = 0 

v=o, a>0 (1.61 

(1 - v} Bvo 
%=-- (i+v)(l--2y) ’ %X0 

for y = 0 

(CD, Y) = 0 (ry for r = fxa + y” -3 0 (1.7) 

2. Applying the exponential E’ourier transform in the coordinate 3~ to (1.1). the par- 
tial differential equations can be reduced to ordinary second order differential equations 

in y, whose solutions are 

@* (s, Y) = A (4 exp (--SW +B fs) exP (sfiy) @.*I 

Y* (s, y) = C (4 exp (--say) -I- D (4 exp (sazd 

Here s is the complex transformation parameter, and the asterisk denotes the Fourier 

transform of the quantity indicated. Application of a Fourier transform in the coordinate 
2 to the corresponding relationships for the stresses and displacements yields 

a,* = MD* 1/11 - (h + 2p) SQ” - 2pisYy* 

by* = (h 4 2p) 4)iV - ?&D* + 2p-isYV* 

Z* XI/ = p f--2isG+/* -+- szyP* + tk”$) 

L1* = - is@* -J- YU*, v* = CD,* + isr* 

According to boundary conditions (1.6) we have 

t2.21 

(2.3) 

0 
The constants of integration for the Fourier transfiks of the longitudinal and trans- 

verse wave potentials (‘2.1) are determined from the boundary conditions (2.3). The last 
three of these conditions can be used to determine three constants in terms of the fourth. 
The determination of the fourth condition, while remaining constant, results in a Wiener- 

Hopf type equation to find the unknowns, the Fourier transforms of the normal stresses on 
the continuation of the crack o +* and the vertical displacements of the crack lips v_*. 

Omitting the algebraic computations and lettig F (s) denote the function 

s {4@ (2 + az) - up [ (1 + ~2)~ + 41 ch (sub) ch (sJ3b) + 

F (s) = ((i + cGja + 4~~93~ J sh (SC&) sb (sJ3b)} (2.4) 
2 (a2 - 1) ;Mp JrJ3 sh (@) ch (SC&) - sh (sstb) ch (spb) 

we arrive at the following equation of Wiener-ttopf type: 
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cJ& * 

T-- 
(1 -Y) Evo 

is211 (1 + v) (1 - 2v) 
= MF (s) v_* (2.5) 

M = 4uP - (1 + w 
2i (a2 -11) P 

Let us represent the function F (s) as the product 

F (s) = F, (s) F- (s) (2.6) 

Here the functions F, (s), F_ (s) are analytic and different from zero in the upper and 

lower half-planes, respectively. Taking account of factorization, (2.5) can be written as: 

a+* (1 -v) Evo 
-- 
2pF, (4 is2p (1 + Y) (1 - 2~) F, (8) 

= MF_ (s) v_* 

The second member in the left side of this equation has a first order pole at s = 0. 

Let us select the contour of integration in such a manner that the point s = 0 would 

belong to the upper half-plane of the s-plane. After an identical transformation, the 

equation of Wiener-Hopf type can be written in the form: 

(~--Y)EvoIF+(O)--+(S)I 
is2~ (1 + Y) (1 - 2~) F, (0) F, (s) 

= MF_ (s) v_* + 

(1 - v) Evo 

is2u (1 + v) (1 -- 2v) F, (0) 
(2.7) 

There remains to factorize the function F (s) in the form (2.6). On the basis of the Wei- 

erstrass theorem on factorization, we can obtain 

F_(s) = F_ (0) ; 1,“; I”, fi ( (I-’ / ‘n) :l + ‘I$) 

n=l (1 - s / zn) (1 -t s / Zn) 
} = F, (+) 

, 2, p/w . 1 
=- I%ll~l~-t~/(4~)1~ F- (0) 

F_ (0) = F, (0) = e.ix’4 
C 

p (b)_’ (1 - py (1 - cty ‘/a 

433 - (1 + .2)2 I 

Here y is the Euler constant, r (z) is the gamma function, and the complex numbers sn 

and Z, are roots of the equations 

4ag (1 + a2) - 43 I(1 + cV+ 41 ch (s,,ab) ch (s&b) + ((1 + a%)* + 4 azfia] x 
sh (s,,ab) sh (s,$b) = 0 

a0 sh (z&b) ch (z,,ab) - sh (z,ab) ch (zJIb) = 0 

Let us now apply the standard Wiener-Hopf procedure to (2.7). The left side of this 
equation is an analytic function in the upper half-plane of the s-plane, and the right 
side is an analytic function in the lower half-plane of the s-plane. By the principle of 
continuous extension it can be asserted that the left and right sides of this equation 
are the analytic continuations of each other. There remains to clarify the behavior of a 
function defined in such a manner, and analytic in the whole s-plane, at infinity.Using 
a theorem of Abelain type [lo] and the condition at the “edge” (1.4), it can be shown 
that the analytic function tends to zero at infinity. Let us note that F, s = s’/’ as s - 
m. Then by virtue of the Liouville theorem, it is zero identically in the whole s -plane. 
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Therefore, we obtain 

v_* = i (1 - v) Eva 1 

2~(l~v)(l-2v)~F~(o) sf;‘_) 

(2.8) 

(2.9) 

NOW, let us determine the coefficient of stress intensity R which is of fundamental inte- 
rest in the mechanics of brittle fracture. According to (2.15) we find as s - 03 

o+ * zy 
i(i - VI Evo s-‘la 

(i + v) (1 - 2v) F, (0) 
On the other hand, using the condition 

a,=K/v-zz for x-+0 
at the end of the crack. we have 

(2.10) 

(2.il) 

It is hence assumed that s tends to infinity while remaining in the upper half-plane. 

According to (2.10) and (2. ll), we finally find the coefficient of stress intensity 

Here 

m=c/ca 

In particular. as m --t 0 we obtain the solution of the static problem 

K”z Eva b ‘h 

(1 + v) (1 - 2+*” 

It follows from (2.12) that as the crack propagation velocity increases, the coefficient 

of stress intensity drops monotonely and vanishes at the Rayleigh velocity m = mn . 
For m > mn the coefficient of stress intensity becomes imaginary. 

Formula (2.12) has been found in [9] by another method. 
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